

Welcome to the HDMF-common Format Specification

Introduction

	1. Overview of hdmf-common
	1.1. DynamicTable

	1.2. VectorData

	1.3. Ragged Arrays

	2. Experimental data structures
	2.1. ExternalResources

Format Specification

	1. Format Overview
	1.1. Namespace – HDMF Common

	1.2. Type Hierarchy

	2. Type Specifications
	2.1. Base data types
	2.1.1. Data

	2.1.2. Container

	2.1.3. SimpleMultiContainer

	2.2. Table data types
	2.2.1. VectorData

	2.2.2. VectorIndex

	2.2.3. ElementIdentifiers

	2.2.4. DynamicTableRegion

	2.2.5. DynamicTable

	2.2.6. AlignedDynamicTable

	2.3. Sparse data types
	2.3.1. CSRMatrix

	3. Schema Sources
	3.1. Namespace – HDMF Common

	3.2. Base data types
	3.2.1. Data

	3.2.2. Container

	3.2.3. SimpleMultiContainer

	3.3. Table data types
	3.3.1. VectorData

	3.3.2. VectorIndex

	3.3.3. ElementIdentifiers

	3.3.4. DynamicTableRegion

	3.3.5. DynamicTable

	3.3.6. AlignedDynamicTable

	3.4. Sparse data types
	3.4.1. CSRMatrix

Resources

	Making a Pull Request

	Merging PRs and Making Releases

	Making a Release Checklist

History & Legal

	hdmf-common Release Notes
	1.8.0 (August 4, 2023)

	1.7.0 (June 22, 2023)

	1.6.0 (May 3, 2023)

	1.5.1 (January 10, 2022)

	1.5.0 (April 19, 2021)

	1.4.0 (March 29, 2021)

	1.3.0 (December 2, 2020)

	1.2.1 (November 4, 2020)

	1.2.0 (July 10, 2020)

	1.1.3 (January 21, 2020)

	1.1.2 (January 9, 2020)

	1.1.1 (January 9, 2020)

	1.1.0 (January 3, 2020)

	1.0.0 (September 26, 2019)

	hdmf-experimental Release Notes
	0.5.0 (August 4, 2023)

	0.4.0 (June 22, 2023)

	0.3.0 (May 3, 2023)

	0.2.0 (January 10, 2022)

	0.1.0 (March 29, 2021)

	Credits
	Authors

	Legal
	Copyright

	License

1. Overview of hdmf-common

hdmf-common defines common data structures to be used across applications.

1.1. DynamicTable

The DynamicTable type is used to store tabular data. The tables are created in a columnar fashion
with each column stored in its own VectorData object. Rows of the table are assigned unique ids with
the required id column of type ElementIdentifier. The colnames attribute indicates the order of the columns.

1.2. VectorData

VectorData is the datatype used to store a column in a DynamicTable. If unpaired with a
VectorIndex object the first dimension is the row dimension, which must be the same across all of the columns in
that DynamicTable.

1.3. Ragged Arrays

(also known as Jagged Arrays)

Sometimes, you want to have a 2-d array where each row of the array has a different number of elements. For instance,
in neuroscience, when storing the action potential times of sorted neurons, you might want to store them as a
neuron x times matrix, but the problem is that each neuron will have a different number of spikes, so the second
dimension will be inconsistent.

[image: ragged array goal]

There are a number of possible solutions to this problem. Some solve it by NaN-padding
the array. You might want to store the spike times of each neuron in a separate dataset, but that will not scale well if
you have many neurons. In HDMF, you would store this using a pair of objects a VectorData and a VectorIndex
object. The VectorData array holds all of the data concatenated as a 1-d array, and it is paired with a link to a
VectorIndex object that indexes the data, forming a map between the rows of the ragged array and the indices of
VectorData.

[image: ragged arrays in HDMF]

These objects are generally stored inside a DynamicTable, and the elements of VectorIndex map
onto the rows of the table. The VectorData object may be n-dimensional, but only the first dimension is ragged.

2. Experimental data structures

The following data structures are currently available under the HDMF-experimental schema. These are subject to change! They are
not guaranteed to exist in the future nor maintain backward compatibility.

2.1. ExternalResources

The ExternalResources type is used to store references to data stored in external, web-accessible databases.
This information is maintained using four row-based tables.

 Version v1.8.0 Aug 09, 2023

1. Format Overview

1.1. Namespace – HDMF Common

	Description: Common data structures provided by HDMF

	Name: hdmf-common

	Full Name: HDMF Common

	Version: 1.8.0

	
	Authors:
	
	Andrew Tritt

	Oliver Ruebel

	Ryan Ly

	Ben Dichter

	
	Contacts:
	
	ajtritt@lbl.gov

	oruebel@lbl.gov

	rly@lbl.gov

	bdichter@lbl.gov

	
	Schema:
	
	doc: base data types

	source: base.yaml

	title: Base data types

	doc: data types for a column-based table

	source: table.yaml

	title: Table data types

	doc: data types for different types of sparse matrices

	source: sparse.yaml

	title: Sparse data types

1.2. Type Hierarchy

	Container

	CSRMatrix

	DynamicTable

	AlignedDynamicTable

	SimpleMultiContainer

	Data

	ElementIdentifiers

	VectorData

	DynamicTableRegion

	VectorIndex

2. Type Specifications

2.1. Base data types

base data types

2.1.1. Data

Overview: An abstract data type for a dataset.

	Primitive Type: Dataset

	Subtypes: ElementIdentifiers, DynamicTableRegion, VectorIndex, VectorData

	Source filename: base.yaml

	Source Specification: see Section 3.2.1

2.1.2. Container

Overview: An abstract data type for a group storing collections of data and metadata. Base type for all data and metadata containers.

	Primitive Type: Group

	Subtypes: SimpleMultiContainer, DynamicTable, AlignedDynamicTable, CSRMatrix

	Source filename: base.yaml

	Source Specification: see Section 3.2.2

2.1.3. SimpleMultiContainer

Overview: A simple Container for holding onto multiple containers.

SimpleMultiContainer extends Container and includes all elements of Container with the following additions or changes.

	Extends: Container

	Primitive Type: Group

	Inherits from: Container

	Source filename: base.yaml

	Source Specification: see Section 3.2.3

[image: SimpleMultiContainer]

Table 2.1 Datasets, Links, and Attributes contained in <SimpleMultiContainer>

	Id

	Type

	Description

	<SimpleMultiContainer>

	Group

	Top level Group for <SimpleMultiContainer>

	Neurodata Type: SimpleMultiContainer

	Extends: Container

	.<Data>

	Dataset

	Data objects held within this SimpleMultiContainer.

	Extends: Data

	Quantity: 0 or more

Table 2.2 Groups contained in <SimpleMultiContainer>

	Id

	Type

	Description

	<SimpleMultiContainer>

	Group

	Top level Group for <SimpleMultiContainer>

	Neurodata Type: SimpleMultiContainer

	Extends: Container

	.<Container>

	Group

	Container objects held within this SimpleMultiContainer.

	Extends: Container

	Quantity: 0 or more

2.1.3.1. Groups: <Container>

Container objects held within this SimpleMultiContainer.

	Extends: Container

	Quantity: 0 or more

2.2. Table data types

data types for a column-based table

2.2.1. VectorData

Overview: An n-dimensional dataset representing a column of a DynamicTable. If used without an accompanying VectorIndex, first dimension is along the rows of the DynamicTable and each step along the first dimension is a cell of the larger table. VectorData can also be used to represent a ragged array if paired with a VectorIndex. This allows for storing arrays of varying length in a single cell of the DynamicTable by indexing into this VectorData. The first vector is at VectorData[0:VectorIndex[0]]. The second vector is at VectorData[VectorIndex[0]:VectorIndex[1]], and so on.

VectorData extends Data and includes all elements of Data with the following additions or changes.

	Extends: Data

	Primitive Type: Dataset

	Dimensions: [[‘dim0’], [‘dim0’, ‘dim1’], [‘dim0’, ‘dim1’, ‘dim2’], [‘dim0’, ‘dim1’, ‘dim2’, ‘dim3’]]

	Shape: [[None], [None, None], [None, None, None], [None, None, None, None]]

	Inherits from: Data

	Subtypes: DynamicTableRegion, VectorIndex

	Source filename: table.yaml

	Source Specification: see Section 3.3.1

Table 2.3 Datasets, Links, and Attributes contained in <VectorData>

	Id

	Type

	Description

	<VectorData>

	Dataset

	Top level Dataset for <VectorData>

	Neurodata Type: VectorData

	Extends: Data

	Dimensions: [[‘dim0’], [‘dim0’, ‘dim1’], [‘dim0’, ‘dim1’, ‘dim2’], [‘dim0’, ‘dim1’, ‘dim2’, ‘dim3’]]

	Shape: [[None], [None, None], [None, None, None], [None, None, None, None]]

	.description

	Attribute

	Description of what these vectors represent.

	Data Type: text

	Name: description

2.2.2. VectorIndex

Overview: Used with VectorData to encode a ragged array. An array of indices into the first dimension of the target VectorData, and forming a map between the rows of a DynamicTable and the indices of the VectorData. The name of the VectorIndex is expected to be the name of the target VectorData object followed by “_index”.

VectorIndex extends VectorData and includes all elements of VectorData with the following additions or changes.

	Extends: VectorData

	Primitive Type: Dataset

	Data Type: uint8

	Dimensions: [‘num_rows’]

	Shape: [None]

	Inherits from: VectorData, Data

	Source filename: table.yaml

	Source Specification: see Section 3.3.2

Table 2.4 Datasets, Links, and Attributes contained in <VectorIndex>

	Id

	Type

	Description

	<VectorIndex>

	Dataset

	Top level Dataset for <VectorIndex>

	Neurodata Type: VectorIndex

	Extends: VectorData

	Data Type: uint8

	Dimensions: [‘num_rows’]

	Shape: [None]

	.target

	Attribute

	Reference to the target dataset that this index applies to.

	Data Type: object reference to VectorData

	Name: target

2.2.3. ElementIdentifiers

Overview: A list of unique identifiers for values within a dataset, e.g. rows of a DynamicTable.

ElementIdentifiers extends Data and includes all elements of Data with the following additions or changes.

	Extends: Data

	Primitive Type: Dataset

	Data Type: int

	Dimensions: [‘num_elements’]

	Shape: [None]

	Default Name: element_id

	Inherits from: Data

	Source filename: table.yaml

	Source Specification: see Section 3.3.3

2.2.4. DynamicTableRegion

Overview: DynamicTableRegion provides a link from one table to an index or region of another. The table attribute is a link to another DynamicTable, indicating which table is referenced, and the data is int(s) indicating the row(s) (0-indexed) of the target array. DynamicTableRegion`s can be used to associate rows with repeated meta-data without data duplication. They can also be used to create hierarchical relationships between multiple `DynamicTable`s. `DynamicTableRegion objects may be paired with a VectorIndex object to create ragged references, so a single cell of a DynamicTable can reference many rows of another DynamicTable.

DynamicTableRegion extends VectorData and includes all elements of VectorData with the following additions or changes.

	Extends: VectorData

	Primitive Type: Dataset

	Data Type: int

	Dimensions: [‘num_rows’]

	Shape: [None]

	Inherits from: VectorData, Data

	Source filename: table.yaml

	Source Specification: see Section 3.3.4

[image: DynamicTableRegion]

Table 2.5 Datasets, Links, and Attributes contained in <DynamicTableRegion>

	Id

	Type

	Description

	<DynamicTableRegion>

	Dataset

	Top level Dataset for <DynamicTableRegion>

	Neurodata Type: DynamicTableRegion

	Extends: VectorData

	Data Type: int

	Dimensions: [‘num_rows’]

	Shape: [None]

	.table

	Attribute

	Reference to the DynamicTable object that this region applies to.

	Data Type: object reference to DynamicTable

	Name: table

	.description

	Attribute

	Description of what this table region points to.

	Data Type: text

	Name: description

2.2.5. DynamicTable

Overview: A group containing multiple datasets that are aligned on the first dimension (Currently, this requirement if left up to APIs to check and enforce). These datasets represent different columns in the table. Apart from a column that contains unique identifiers for each row, there are no other required datasets. Users are free to add any number of custom VectorData objects (columns) here. DynamicTable also supports ragged array columns, where each element can be of a different size. To add a ragged array column, use a VectorIndex type to index the corresponding VectorData type. See documentation for VectorData and VectorIndex for more details. Unlike a compound data type, which is analogous to storing an array-of-structs, a DynamicTable can be thought of as a struct-of-arrays. This provides an alternative structure to choose from when optimizing storage for anticipated access patterns. Additionally, this type provides a way of creating a table without having to define a compound type up front. Although this convenience may be attractive, users should think carefully about how data will be accessed. DynamicTable is more appropriate for column-centric access, whereas a dataset with a compound type would be more appropriate for row-centric access. Finally, data size should also be taken into account. For small tables, performance loss may be an acceptable trade-off for the flexibility of a DynamicTable.

DynamicTable extends Container and includes all elements of Container with the following additions or changes.

	Extends: Container

	Primitive Type: Group

	Inherits from: Container

	Subtypes: AlignedDynamicTable

	Source filename: table.yaml

	Source Specification: see Section 3.3.5

[image: DynamicTable]

Table 2.6 Datasets, Links, and Attributes contained in <DynamicTable>

	Id

	Type

	Description

	<DynamicTable>

	Group

	Top level Group for <DynamicTable>

	Neurodata Type: DynamicTable

	Extends: Container

	.colnames

	Attribute

	The names of the columns in this table. This should be used to specify an order to the columns.

	Data Type: text

	Dimensions: [‘num_columns’]

	Shape: [None]

	Name: colnames

	.description

	Attribute

	Description of what is in this dynamic table.

	Data Type: text

	Name: description

	.id

	Dataset

	Array of unique identifiers for the rows of this dynamic table.

	Extends: ElementIdentifiers

	Data Type: int

	Dimensions: [‘num_rows’]

	Shape: [None]

	Name: id

	.<VectorData>

	Dataset

	Vector columns, including index columns, of this dynamic table.

	Extends: VectorData

	Quantity: 0 or more

2.2.6. AlignedDynamicTable

Overview: DynamicTable container that supports storing a collection of sub-tables. Each sub-table is a DynamicTable itself that is aligned with the main table by row index. I.e., all DynamicTables stored in this group MUST have the same number of rows. This type effectively defines a 2-level table in which the main data is stored in the main table implemented by this type and additional columns of the table are grouped into categories, with each category being represented by a separate DynamicTable stored within the group.

AlignedDynamicTable extends DynamicTable and includes all elements of DynamicTable with the following additions or changes.

	Extends: DynamicTable

	Primitive Type: Group

	Inherits from: DynamicTable, Container

	Source filename: table.yaml

	Source Specification: see Section 3.3.6

[image: AlignedDynamicTable]

Table 2.7 Datasets, Links, and Attributes contained in <AlignedDynamicTable>

	Id

	Type

	Description

	<AlignedDynamicTable>

	Group

	Top level Group for <AlignedDynamicTable>

	Neurodata Type: AlignedDynamicTable

	Extends: DynamicTable

	.categories

	Attribute

	The names of the categories in this AlignedDynamicTable. Each category is represented by one DynamicTable stored in the parent group. This attribute should be used to specify an order of categories and the category names must match the names of the corresponding DynamicTable in the group.

	Data Type: text

	Dimensions: [‘num_categories’]

	Shape: [None]

	Name: categories

Table 2.8 Groups contained in <AlignedDynamicTable>

	Id

	Type

	Description

	<AlignedDynamicTable>

	Group

	Top level Group for <AlignedDynamicTable>

	Neurodata Type: AlignedDynamicTable

	Extends: DynamicTable

	.<DynamicTable>

	Group

	A DynamicTable representing a particular category for columns in the AlignedDynamicTable parent container. The table MUST be aligned with (i.e., have the same number of rows) as all other DynamicTables stored in the AlignedDynamicTable parent container. The name of the category is given by the name of the DynamicTable and its description by the description attribute of the DynamicTable.

	Extends: DynamicTable

	Quantity: 0 or more

2.2.6.1. Groups: <DynamicTable>

A DynamicTable representing a particular category for columns in the AlignedDynamicTable parent container. The table MUST be aligned with (i.e., have the same number of rows) as all other DynamicTables stored in the AlignedDynamicTable parent container. The name of the category is given by the name of the DynamicTable and its description by the description attribute of the DynamicTable.

	Extends: DynamicTable

	Quantity: 0 or more

2.3. Sparse data types

data types for different types of sparse matrices

2.3.1. CSRMatrix

Overview: A compressed sparse row matrix. Data are stored in the standard CSR format, where column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]].

CSRMatrix extends Container and includes all elements of Container with the following additions or changes.

	Extends: Container

	Primitive Type: Group

	Inherits from: Container

	Source filename: sparse.yaml

	Source Specification: see Section 3.4.1

[image: CSRMatrix]

Table 2.9 Datasets, Links, and Attributes contained in <CSRMatrix>

	Id

	Type

	Description

	<CSRMatrix>

	Group

	Top level Group for <CSRMatrix>

	Neurodata Type: CSRMatrix

	Extends: Container

	.shape

	Attribute

	The shape (number of rows, number of columns) of this sparse matrix.

	Data Type: uint

	Dimensions: [‘number of rows, number of columns’]

	Shape: [2]

	Name: shape

	.indices

	Dataset

	The column indices.

	Data Type: uint

	Dimensions: [‘number of non-zero values’]

	Shape: [None]

	Name: indices

	.indptr

	Dataset

	The row index pointer.

	Data Type: uint

	Dimensions: [‘number of rows in the matrix + 1’]

	Shape: [None]

	Name: indptr

	.data

	Dataset

	The non-zero values in the matrix.

	Dimensions: [‘number of non-zero values’]

	Shape: [None]

	Name: data

3. Schema Sources

Source Specification: see Section 3.1

3.1. Namespace – HDMF Common

Description: see Section 1.1

YAML Specification:

 1author:
 2- Andrew Tritt
 3- Oliver Ruebel
 4- Ryan Ly
 5- Ben Dichter
 6contact:
 7- ajtritt@lbl.gov
 8- oruebel@lbl.gov
 9- rly@lbl.gov
10- bdichter@lbl.gov
11doc: Common data structures provided by HDMF
12full_name: HDMF Common
13name: hdmf-common
14schema:
15- doc: base data types
16 source: base.yaml
17 title: Base data types
18- doc: data types for a column-based table
19 source: table.yaml
20 title: Table data types
21- doc: data types for different types of sparse matrices
22 source: sparse.yaml
23 title: Sparse data types
24version: 1.8.0

3.2. Base data types

base data types

3.2.1. Data

Description: see Section 2.1.1

YAML Specification:

1data_type_def: Data
2doc: An abstract data type for a dataset.

3.2.2. Container

Description: see Section 2.1.2

YAML Specification:

1data_type_def: Container
2doc: An abstract data type for a group storing collections of data and metadata. Base
3 type for all data and metadata containers.

3.2.3. SimpleMultiContainer

Extends: Container

Description: see Section 2.1.3

YAML Specification:

 1data_type_def: SimpleMultiContainer
 2data_type_inc: Container
 3datasets:
 4- data_type_inc: Data
 5 doc: Data objects held within this SimpleMultiContainer.
 6 quantity: '*'
 7doc: A simple Container for holding onto multiple containers.
 8groups:
 9- data_type_inc: Container
10 doc: Container objects held within this SimpleMultiContainer.
11 quantity: '*'

3.3. Table data types

data types for a column-based table

3.3.1. VectorData

Extends: Data

Description: see Section 2.2.1

YAML Specification:

 1attributes:
 2- doc: Description of what these vectors represent.
 3 dtype: text
 4 name: description
 5data_type_def: VectorData
 6data_type_inc: Data
 7dims:
 8- - dim0
 9- - dim0
10 - dim1
11- - dim0
12 - dim1
13 - dim2
14- - dim0
15 - dim1
16 - dim2
17 - dim3
18doc: An n-dimensional dataset representing a column of a DynamicTable. If used without
19 an accompanying VectorIndex, first dimension is along the rows of the DynamicTable
20 and each step along the first dimension is a cell of the larger table. VectorData
21 can also be used to represent a ragged array if paired with a VectorIndex. This
22 allows for storing arrays of varying length in a single cell of the DynamicTable
23 by indexing into this VectorData. The first vector is at VectorData[0:VectorIndex[0]].
24 The second vector is at VectorData[VectorIndex[0]:VectorIndex[1]], and so on.
25shape:
26- - null
27- - null
28 - null
29- - null
30 - null
31 - null
32- - null
33 - null
34 - null
35 - null

3.3.2. VectorIndex

Extends: VectorData

Description: see Section 2.2.2

YAML Specification:

 1attributes:
 2- doc: Reference to the target dataset that this index applies to.
 3 dtype:
 4 reftype: object
 5 target_type: VectorData
 6 name: target
 7data_type_def: VectorIndex
 8data_type_inc: VectorData
 9dims:
10- num_rows
11doc: Used with VectorData to encode a ragged array. An array of indices into the first
12 dimension of the target VectorData, and forming a map between the rows of a DynamicTable
13 and the indices of the VectorData. The name of the VectorIndex is expected to be
14 the name of the target VectorData object followed by "_index".
15dtype: uint8
16shape:
17- null

3.3.3. ElementIdentifiers

Extends: Data

Description: see Section 2.2.3

YAML Specification:

1data_type_def: ElementIdentifiers
2data_type_inc: Data
3default_name: element_id
4dims:
5- num_elements
6doc: A list of unique identifiers for values within a dataset, e.g. rows of a DynamicTable.
7dtype: int
8shape:
9- null

3.3.4. DynamicTableRegion

Extends: VectorData

Description: see Section 2.2.4

YAML Specification:

 1attributes:
 2- doc: Reference to the DynamicTable object that this region applies to.
 3 dtype:
 4 reftype: object
 5 target_type: DynamicTable
 6 name: table
 7- doc: Description of what this table region points to.
 8 dtype: text
 9 name: description
10data_type_def: DynamicTableRegion
11data_type_inc: VectorData
12dims:
13- num_rows
14doc: DynamicTableRegion provides a link from one table to an index or region of another.
15 The `table` attribute is a link to another `DynamicTable`, indicating which table
16 is referenced, and the data is int(s) indicating the row(s) (0-indexed) of the target
17 array. `DynamicTableRegion`s can be used to associate rows with repeated meta-data
18 without data duplication. They can also be used to create hierarchical relationships
19 between multiple `DynamicTable`s. `DynamicTableRegion` objects may be paired with
20 a `VectorIndex` object to create ragged references, so a single cell of a `DynamicTable`
21 can reference many rows of another `DynamicTable`.
22dtype: int
23shape:
24- null

3.3.5. DynamicTable

Extends: Container

Description: see Section 2.2.5

YAML Specification:

 1attributes:
 2- dims:
 3 - num_columns
 4 doc: The names of the columns in this table. This should be used to specify an order
 5 to the columns.
 6 dtype: text
 7 name: colnames
 8 shape:
 9 - null
10- doc: Description of what is in this dynamic table.
11 dtype: text
12 name: description
13data_type_def: DynamicTable
14data_type_inc: Container
15datasets:
16- data_type_inc: ElementIdentifiers
17 dims:
18 - num_rows
19 doc: Array of unique identifiers for the rows of this dynamic table.
20 dtype: int
21 name: id
22 shape:
23 - null
24- data_type_inc: VectorData
25 doc: Vector columns, including index columns, of this dynamic table.
26 quantity: '*'
27doc: A group containing multiple datasets that are aligned on the first dimension
28 (Currently, this requirement if left up to APIs to check and enforce). These datasets
29 represent different columns in the table. Apart from a column that contains unique
30 identifiers for each row, there are no other required datasets. Users are free to
31 add any number of custom VectorData objects (columns) here. DynamicTable also supports
32 ragged array columns, where each element can be of a different size. To add a ragged
33 array column, use a VectorIndex type to index the corresponding VectorData type.
34 See documentation for VectorData and VectorIndex for more details. Unlike a compound
35 data type, which is analogous to storing an array-of-structs, a DynamicTable can
36 be thought of as a struct-of-arrays. This provides an alternative structure to choose
37 from when optimizing storage for anticipated access patterns. Additionally, this
38 type provides a way of creating a table without having to define a compound type
39 up front. Although this convenience may be attractive, users should think carefully
40 about how data will be accessed. DynamicTable is more appropriate for column-centric
41 access, whereas a dataset with a compound type would be more appropriate for row-centric
42 access. Finally, data size should also be taken into account. For small tables,
43 performance loss may be an acceptable trade-off for the flexibility of a DynamicTable.

3.3.6. AlignedDynamicTable

Extends: DynamicTable

Description: see Section 2.2.6

YAML Specification:

 1attributes:
 2- dims:
 3 - num_categories
 4 doc: The names of the categories in this AlignedDynamicTable. Each category is represented
 5 by one DynamicTable stored in the parent group. This attribute should be used
 6 to specify an order of categories and the category names must match the names
 7 of the corresponding DynamicTable in the group.
 8 dtype: text
 9 name: categories
10 shape:
11 - null
12data_type_def: AlignedDynamicTable
13data_type_inc: DynamicTable
14doc: DynamicTable container that supports storing a collection of sub-tables. Each
15 sub-table is a DynamicTable itself that is aligned with the main table by row index.
16 I.e., all DynamicTables stored in this group MUST have the same number of rows.
17 This type effectively defines a 2-level table in which the main data is stored in
18 the main table implemented by this type and additional columns of the table are
19 grouped into categories, with each category being represented by a separate DynamicTable
20 stored within the group.
21groups:
22- data_type_inc: DynamicTable
23 doc: A DynamicTable representing a particular category for columns in the AlignedDynamicTable
24 parent container. The table MUST be aligned with (i.e., have the same number of
25 rows) as all other DynamicTables stored in the AlignedDynamicTable parent container.
26 The name of the category is given by the name of the DynamicTable and its description
27 by the description attribute of the DynamicTable.
28 quantity: '*'

3.4. Sparse data types

data types for different types of sparse matrices

3.4.1. CSRMatrix

Extends: Container

Description: see Section 2.3.1

YAML Specification:

 1attributes:
 2- dims:
 3 - number of rows, number of columns
 4 doc: The shape (number of rows, number of columns) of this sparse matrix.
 5 dtype: uint
 6 name: shape
 7 shape:
 8 - 2
 9data_type_def: CSRMatrix
10data_type_inc: Container
11datasets:
12- dims:
13 - number of non-zero values
14 doc: The column indices.
15 dtype: uint
16 name: indices
17 shape:
18 - null
19- dims:
20 - number of rows in the matrix + 1
21 doc: The row index pointer.
22 dtype: uint
23 name: indptr
24 shape:
25 - null
26- dims:
27 - number of non-zero values
28 doc: The non-zero values in the matrix.
29 name: data
30 shape:
31 - null
32doc: A compressed sparse row matrix. Data are stored in the standard CSR format, where
33 column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their
34 corresponding values are stored in data[indptr[i]:indptr[i+1]].

Making a Pull Request

Actions to take on each PR that modifies the schema and does not prepare the schema for a public release
(this is also in the GitHub PR template [https://github.com/hdmf-dev/hdmf-common-schema/blob/main/.github/PULL_REQUEST_TEMPLATE.md]):

If the current schema version on “main” is a public release, then:

	Update the version string in docs/source/conf.py and common/namespace.yaml to the next version with the
suffix “-alpha”

	Add a new section in the release notes for the new version with the date “Upcoming”

Always:

	Add release notes for the PR to docs/source/hdmf_common_release_notes.rst and/or
docs/source/hdmf_experimental_release_notes.rst

Documentation or internal changes to the repo (i.e., changes that do not affect the schema files)
do not need to be accompanied with a version bump or addition to the release notes.

Merging PRs and Making Releases

Public release: a tagged release of the schema. The version string MUST NOT have a suffix indicating a pre-release,
such as “-alpha”. The current “dev” branch of HDMF and all HDMF releases MUST point to a public release of
hdmf-common-schema. All schema that use hdmf-common-schema as a submodule MUST also point only to public releases.

Internal release: a state of the schema “main” branch where the version string ends with “-alpha”.

The default branch of hdmf-common-schema is “main”. The “main” branch holds the bleeding edge version of
the hdmf-common schema specification.

PRs should be made to “main”. Every PR should include an update to the namespace release notes
(docs/source/hdmf_common_release_notes.rst and/or docs/source/hdmf_experimental_release_notes.rst).
If the current version is a public release, then the PR should also update the version of the schema in two places:
docs/source/conf.py and common/namespace.yaml. The new version should be the next bugfix/minor/major version
of the schema with the suffix “-alpha”. For example, if the current schema on “main” has version “2.2.0”,
then a PR implementing a bug fix should update the schema version from “2.2.0” to “2.2.1-alpha”. Appending the “-alpha”
suffix ensures that any person or API accessing the default “main” branch of the repo containing an internal release
of the schema receives the schema with a version string that is distinct from public releases of the schema. If the
current schema on “main” is already an internal release, then the version string does not need to be updated unless
the PR requires an upgrade in the version (e.g., from bugfix to minor).

HDMF should contain a branch and PR that tracks the “main” branch of hdmf-common-schema. Before
a public release of hdmf-common-schema is made, this HDMF branch should be checked to ensure that when the new release
is made, the branch can be merged without issue.

Immediately prior to making a new public release, the version of the schema should be updated to remove the “-alpha”
suffix and the documentation and release notes should be updated as needed (see next section).

The current “dev” branch of HDMF and all HDMF releases MUST always point to a public release of hdmf-common-schema. If
a public release contains an internally released version of hdmf-common-schema, e.g., from an untagged commit on the
“main” branch, then it will be difficult to find the version (commit) of hdmf-common-schema that was used to create
an HDMF file when the schema is not cached.

Making a Release Checklist

Before merging:

	Update requirements versions as needed

	Update legal file dates and information in Legal.txt, license.txt, README.md, docs/source/conf.py,
and any other locations as needed

	Update README.md as needed

	Update the version string in docs/source/conf.py and common/namespace.yaml (remove “-alpha” suffix)

	Update docs/source/conf.py as needed

	Update release notes (set release date) in docs/source/hdmf_common_release_notes.rst,
docs/source/hdmf_experimental_release_notes.rst, and any other docs as needed

	Test docs locally (cd docs; make fulldoc) where the hdmf-common-schema submodule in the local version of HDMF
is fully up-to-date with the head of the main branch.

	Push changes to a new PR and make sure all PRs to be included in this release have been merged. Add
?template=release.md to the PR URL to auto-populate the PR with this checklist.

	Check that the readthedocs build for this PR succeeds (build latest to pull the new branch, then activate and
build docs for new branch): https://readthedocs.org/projects/hdmf-common-schema/builds/

After merging:

	Create a new git tag. Pull the latest main branch locally, run git tag [version] --sign, copy and paste the
release notes into the tag message, and run git push --tags.

	On the GitHub tags [https://github.com/hdmf-dev/hdmf-common-schema/tags] page, click “…” -> “Create release” for the new tag on the right side of the page.
Copy and paste the release notes into the release message, update the formatting if needed (reST to Markdown),
and set the title to the version string.

	Check that the readthedocs “latest” and “stable” builds run and succeed. Delete the readthedocs build for the
merged PR. https://readthedocs.org/projects/hdmf-common-schema/builds/

	Update the HDMF submodule in the HDMF branch corresponding to this schema version to point to the tagged commit.

This checklist can also be found in the GitHub release PR template [https://github.com/hdmf-dev/hdmf-common-schema/blob/main/.github/PULL_REQUEST_TEMPLATE/release.md].

The time between merging this PR and creating a new public release should be minimized.

hdmf-common Release Notes

1.8.0 (August 4, 2023)

	No change in the hdmf-common namespace. See here for changes to the
hdmf-experimental namespace.

1.7.0 (June 22, 2023)

	No change in the hdmf-common namespace. See here for changes to the
hdmf-experimental namespace.

1.6.0 (May 3, 2023)

	No change in the hdmf-common namespace. See here for changes to the
hdmf-experimental namespace.

1.5.1 (January 10, 2022)

	No change in the hdmf-common namespace. See here for changes to the
hdmf-experimental namespace.

1.5.0 (April 19, 2021)

	Added AlignedDynamicTable, which defines a DynamicTable that supports storing a collection of sub-tables.
Each sub-table is itself a DynamicTable that is aligned with the main table by row index. Each sub-table
defines a sub-category in the main table effectively creating a table with sub-headings to organize columns.

1.4.0 (March 29, 2021)

Summary: In 1.4.0, the HDMF-experimental namespace was added, which includes the ExternalResources and EnumData
data types. Schema in the HDMF-experimental namespace are experimental and subject to breaking changes at any time.
ExternalResources was changed to support storing both names and URIs for resources. The VocabData data type was
replaced by EnumData to provide more flexible support for data from a set of fixed values.

	Added EnumData for storing data that comes from a set of fixed values. This replaces VocabData which could
hold only string values. Also, VocabData could hold only a limited number of elements (~64k) when used with the
HDF5 storage backend. EnumData gets around these restrictions by using an untyped dataset (VectorData) instead of
a string attribute to hold the enumerated values.

	Removed VocabData.

	Renamed the “resources” table in ExternalResources to “entities”.

	Created a new “resources” table to store the name and URI of the ontology / external resource used by the “entities”
table in ExternalResources.

	Renamed fields in ExternalResources.

	Added “entities” dataset to ExternalResources. This is a row-based table dataset to replace the functionality of
the “resources” dataset in ExternalResources.

	Changed the “resources” dataset in ExternalResources to store the name and URI of the ontology / external
resource used by the “entities” dataset in ExternalResources.

	Added HDMF-experimental namespace.

	Moved ExternalResources and EnumData to HDMF-experimental.

1.3.0 (December 2, 2020)

	Add data type ExternalResources for storing ontology information / external resource references. NOTE: this
data type is in beta testing and is subject to change in a later version.

	Changed dtype for datasets within CSRMatrix from ‘int’ to ‘uint’. Negative values do not make sense for these
datasets.

1.2.1 (November 4, 2020)

	Update software process documentation for maintainers.

	Fix missing data_type_inc for CSRMatrix. It now has data_type_inc: Container.

	Add hdmf-schema-language comment at the top of each yaml file.

	Add SimpleMultiContainer, a Container for storing other Container and Data objects together

1.2.0 (July 10, 2020)

	Add software process documentation.

	Fix missing dtype for VectorIndex.

	Add new VocabData data type.

	Move Data, Index, and Container to base.yaml. This change does not functionally change the schema.

	VectorIndex now extends VectorData instead of Index. This change allows VectorIndex to index other
VectorIndex types.

	The Index data type is now unused and has been removed.

	Fix documentation for ragged arrays.

1.1.3 (January 21, 2020)

	Fix missing ‘shape’ and ‘dims’ key for types VectorData, VectorIndex, and DynamicTableRegion.

1.1.2 (January 9, 2020)

	Fix version number in namespace.yaml and docs

1.1.1 (January 9, 2020)

	Support for ReadTheDocs continuous documentation was added, and legal/license documents were also added. The schema is
unchanged.

1.1.0 (January 3, 2020)

	The ‘colnames’ attribute of DynamicTable changed from data type ‘ascii’ to ‘text’.

	Improved documentation and type docstrings.

1.0.0 (September 26, 2019)

Initial release.

hdmf-experimental Release Notes

0.5.0 (August 4, 2023)

	Updates ExternalResources to have a uniform name throughout the codebase and the literature, which is now HERD
(HDMF External Resources Data).

	Fixed schema bug regarding the missing quote.

0.4.0 (June 22, 2023)

	In the experimental ExternalResources, added a entity_keys table and removed keys_idx from the entities table.

0.3.0 (May 3, 2023)

	In the experimental ExternalResources, added a files table, removed the resources table, and adjusted
existing columns.

0.2.0 (January 10, 2022)

	In the experimental ExternalResources, added relative_path field to the “objects” table dtype. This is used in
place of the previous field field representing the relative path to get to the dataset/attribute from the object.
The previous field field will be used to represent a compound type field name if the dataset/attribute is a
compound dtype.

	Updated contributors.

0.1.0 (March 29, 2021)

	See the release notes for hdmf-common 1.4.0 for details.

Credits

Authors

	Andrew Tritt

	Oliver Ruebel

	Ryan Ly

	Ben Dichter

	Matthew Avaylon

Legal

Copyright

“hdmf-common-schema” Copyright (c) 2019-2023, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software, please contact Berkeley Lab’s Innovation & Partnerships Office at IPO@lbl.gov.

NOTICE. This Software was developed under funding from the U.S. Department of Energy and the U.S. Government consequently retains certain rights. As such, the U.S. Government has been granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, distribute copies to the public, prepare derivative works, and perform publicly and display publicly, and to permit other to do so.

License

“hdmf-common-schema” Copyright (c) 2019-2023, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

	Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such enhancements or derivative works thereof, in binary and source code form.

Index

hdmf-common Release Notes

The release notes for the “hdmf-common” namespace has moved here.

The release notes for the “hdmf-experimental” namespace has moved here.

 _images/DynamicTableRegion.png
<DynamicTehleRegion> description

e Typed Dataset (1)
e Attributes (2)
—— attribute_of (2)

_images/SimpleMultiContainer.png
<SimpleMul§iContainer> <Contginer>

e Typed Dataset (1)
e Typed Group (2)
—— managed_by (2)

_images/CSRMatrix.png
data

Untyped Dataset (3)
Typed Group (1)
Attributes (1)
managed_by (3)
attribute_of (1)

ptr

_images/DynamicTable.png
Typed Dataset (2)
Typed Group (1)
Attributes (2)
managed_by (2)
attribute_of (2)

<VectqgData>

mes

_images/ragged-array-goal.png
0.03

0.14

0.6

1.25

2.62

3.07

1.23

1.37

2.12

0.56

0.91

_images/ragged-array.png
<Vectorindex> target > <VectorData>

spike_times_index

/

VLCoONOOULDAWNERLO

=
(=)

_static/file.png

_static/minus.png

_images/AlignedDynamicTable.png
<AlignedDygamicTable> <DynangcTable>

e Typed Group (2)
e Attributes (1)
—— managed_by (1)
—— attribute_of (1)

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the HDMF-common Format Specification

 		
 Overview of hdmf-common

 		
 DynamicTable

 		
 VectorData

 		
 Ragged Arrays

 		
 Experimental data structures

 		
 ExternalResources

 		
 Format Overview

 		
 Namespace – HDMF Common

 		
 Type Hierarchy

 		
 Type Specifications

 		
 Base data types

 		
 Data

 		
 Container

 		
 SimpleMultiContainer

 		
 Table data types

 		
 VectorData

 		
 VectorIndex

 		
 ElementIdentifiers

 		
 DynamicTableRegion

 		
 DynamicTable

 		
 AlignedDynamicTable

 		
 Sparse data types

 		
 CSRMatrix

 		
 Schema Sources

 		
 Namespace – HDMF Common

 		
 Base data types

 		
 Data

 		
 Container

 		
 SimpleMultiContainer

 		
 Table data types

 		
 VectorData

 		
 VectorIndex

 		
 ElementIdentifiers

 		
 DynamicTableRegion

 		
 DynamicTable

 		
 AlignedDynamicTable

 		
 Sparse data types

 		
 CSRMatrix

 		
 Making a Pull Request

 		
 Merging PRs and Making Releases

 		
 Making a Release Checklist

 		
 hdmf-common Release Notes

 		
 1.8.0 (August 4, 2023)

 		
 1.7.0 (June 22, 2023)

 		
 1.6.0 (May 3, 2023)

 		
 1.5.1 (January 10, 2022)

 		
 1.5.0 (April 19, 2021)

 		
 1.4.0 (March 29, 2021)

 		
 1.3.0 (December 2, 2020)

 		
 1.2.1 (November 4, 2020)

 		
 1.2.0 (July 10, 2020)

 		
 1.1.3 (January 21, 2020)

 		
 1.1.2 (January 9, 2020)

 		
 1.1.1 (January 9, 2020)

 		
 1.1.0 (January 3, 2020)

 		
 1.0.0 (September 26, 2019)

 		
 hdmf-experimental Release Notes

 		
 0.5.0 (August 4, 2023)

 		
 0.4.0 (June 22, 2023)

 		
 0.3.0 (May 3, 2023)

 		
 0.2.0 (January 10, 2022)

 		
 0.1.0 (March 29, 2021)

 		
 Credits

 		
 Authors

 		
 Legal

 		
 Copyright

 		
 License

